
NASA 
Technical 
Paper 
2291 

March 1984 

An  Assessment of 
Capability To Calc 
Tilting Prop-Rotor 
Aircraft  Performance, 
Loads, and Stability 

the 
:ulat e 

1 NASA 

2291 
. ! TP 

~ c.1 

Wayne Johnson 

LOAN COPY: RETURN TO 
AFWL TECHNtCAL LIBRARY 
KIRTLAND AFB, N.M. 87117 



TECH LIBRARY KAFB, NM 

NASA 
Technical 
Paper 
2291 

1984 

National  Aeronautlcs 
and Space  Adminlstratlon 

Scientific  and  Technical 
Information  Branch 

An Assessment of the 
Capability To Calculate 
Tilting  Prop-Rotor 
Aircraft  Performance, 
Loads, and Stability 

Wayne Johnson 

Ames Research  Center 
Mofe t t  Field, Calajornia 





TABLE OF CONTENTS 

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

AIRCRAFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

ANALYTICALMODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
Degrees of Freedom  and  Analysis  Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
AirframeModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 
TrimAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

PERFORMANCE  RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

ROTOR  LOADS  RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

AEROELASTIC  STABILITY  RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

GENERAL  ASSESSMENT OF TECHNOLOGY  STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
RotorPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
Aircraft  Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
RotorLoads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
AirframeLoads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
Rotorstability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
WhirlFlutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
Aerodynamic  Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
GustAlleviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
Fluttercontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
DataBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

iii 





NOMENCLATURE 

mean line  designation  parameter  for NACA 6-series 
airfoils 

rotor disk  area, nRZ 

airfoil  minimum  drag  coefficient 

airfoil maximum  lift  coefficient 

airfoil  lift  curve  slope 

pitch  link  load  coefficient, NFC/pA(S2R)’ 

blade  beamwise bending  moment  coefficient, 
NMX/pA(CLR)’R 

blade  chordwise  bending  moment  coefficient, 
N M ~ I ~ A ( C L R ) ~ R  

rotor power coefficient, P / P A ( R R ) ~  

rotor  thrust  coefficient, T / P A ( R R ) ~  

airframe  drag 

airframe  equivalent  drag  area  (drag divided by 
dynamic  pressure) 

blade  pitch  link  load 

airframe  lift 

Mach number (velocity divided by  speed  of  sound) 

rotor figure of  merit, cT3/‘/,//2 Cp 

rotor  tip Mach number  (tip  speed R R  divided by 
speed of sound) 

blade  beamwise bending  moment 

blade  chordwise  bending  moment 

number  of  blades  per  rotor 

rotor power 

dynamic  pressure, p V z / 2  

radial  distance  along  rotor  blade 

rotor radius 

rotor  thrust 

aircraft or wind tunnel  speed 

pylon  tilt  angle; 0 for  airplane  mode, 90’ for heli- 
copter  mode 

modal  damping  ratio 

propulsive efficiency, TV/P 

empirical  factor  for  induced  velocity  calculation  in 
helicopter  forward flight 

empirical factor  for  induced velocity  calculation  in 
hover 

air  density 

rotor  solidity  (ratio  total  blade  area to  rotor disk 
area) 

modal  frequency 

rotor  rotational  speed 

V 



Figure 1.- XV-15 Tilt Rotor Research  Aircraft  in  airplane  configuration. 
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SUMMARY 

Calculated performance, loads, and stability o f  the XV-I5 Tilt Rotor Research Aircraft 
are compared with  wind-tunnel and flight measurements, to  define  the level of  the current 
analytical capability for tilting prop-rotor aircraft, and to  define the requirements for addi- 
tional experimental data and further analysis development. The correlation between calcu- 
lated and  measured behavior is generally good, although there are some significant  discrep- 
ancies.  Based on this correlation, the analysis  used is  assessed  overall as being adequate for 
the design, evaluation, and testing of tiltingprop-rotor aircraft. A general  assessment o f  the 
state o f  the art of tilt  rotor predictive capability is given. Specific areas  are identified where 
improvements in the capability to calculate Performance, loads, and stability are desirable. 
Requirements for more accurate and detailed  data which support the development o f  
improved analytical models are identified as well. 

INTRODUCTION 

The XV-15 Tilt Rotor  Research  Aircraft was developed to 
demonstrate  the  solution  of  the  key  technical  problems  of 
this  aircraft  configuration.  With  the  successful  conclusion  of 
the  proof-of-concept flight tests of the XV-15, attention is 
now  focused on the  next  generation  of  tilt  rotor designs. To 
enable  development  of  future  tilting  prop-rotor  aircraft, 
there is a  requirement  for  accurate  prediction  techniques 
which  can be verified  by the  currently available XV-15 test 
data.  The purpose of this paper is to assess the  current  capa- 
bility to calculate performance,  loads,  and  stability of  tilting 
prop-rotor  aircraft. 

These  calculations were performed using a  comprehensive 
analysis (refs. 1 and  2) designed to  handle  tilt  rotor  aircraft 
as  well as  helicopter  configurations.  This  analysis  provides 
performance, blade  loads,  and  aeroelastic  stability  from  a 
single, consistent  analytical  formulation.  The  calculations  are 
compared  with  wind-tunnel  and  flight  measurements  for  the 
XV-15, to  verify the use of the analysis  in the design,  evalua- 
tion,  and  testing of tilt  rotor  aircraft.  The  objective  of  the 
paper is t o  define the level of  the  current  analytical  capabil- 
ity  for  tilting  prop-rotor  aircraft,  and to identify  where  addi- 
tional  experimental  data  and  further analysis  development 
are  desirable. 

description  of the  geometric,  structural,  inertial,  and  aerody- 
namic  characteristics  are given in  references 3-6. The XV-15 
has  been flight tested  by NASA and Bell Helicopter  since 
1978,  and  data  on  the  performance,  blade  loads,  and  aero- 
elastic stability  are  now  available.  The  rotor  alone was tested 
full scale  in the Ames  Research Center 40- by  80-Foot Wind 
Tunnel  during  1970.  The  rotor was tested  on  a  powered 
stand  for  performance  and  loads  data (fig. 3) with  the 
overhead  doors open  for  hover  tests,  and was tested while 
windmilling, on a  cantilever  wing,  for  stability  data (fig. 4). 
The  flight-test  data  presented  in  this  report were obtained 
from  the  Tilt  Rotor  Aircraft Office at NASA-Ames  Research 
Center,  and  from Bell Helicopter.  The  wind-tunnel  data were 
obtained  from  reference 7. 

ANALYTICAL  MODEL 

The  analysis  used to  perform  the  calculations  presented  in 
this  report is described in detail  in  references 1 and 2. The 
minimum  required level of modeling  complexity is different 
for  the  performance,  loads,  and  stability  problems.  The 
requirements  for  a  sufficient  model  are  established  by  vary- 
ing the relevant  parameters,  such  as the  number  of degrees of 
freedom.  Here it is also  necessary to consider the differences 
between  the  aircraft  and  the  rotor  alone,  which are  reflected 
primarily  in the  trim  procedure  and  in  the degrees of  free- 
dom  for  the  stability  calculation. 

AIRCRAFT 

Degrees of Freedom and Analysis Parameters 
The XV-15 Tilt  Rotor  Research  Aircraft  in  flight is shown 

in figures 1 and 2. The  principal  parameters  describing  the 
aircraft  and  the  rotor  system  are given in  table 1. A  complete 

The degrees  of freedom used in the calculations  are  shown 
in  table 2. The  performance  and  loads  results  require  a 



Figure 2.- XV-15  Tilt Rotor Research  Aircraft  in helicopter  configuration. 

solution  for  the  periodic  rotor  motion, whereas the  stability solution  when  calculating  blade  loads;  one  harmonic was 
solution involves the  perturbed  motion of the  rotor  and  the generally  sufficient  for the performance  calculations. An 
airframe.  Ten  harmonics  were  used  in  the  periodic  motion azimuthal  increment  of 1.5' was  used  in the  periodic  motion 

solution.  Fifteen radial stations,  concentrated  at  the  blade 

TABLE  1 .- XV-15  TILT  ROTOR RESEARCH tip, were  used for  the  aerodynamic analysis  of the  rotor. 
There  was  little  effect  shown in the  calculations of the 

blade  loads  when two  to six  bending  modes  or  zero to  two AIRCRAFT  PARAMETERS 

Configuration . . . . . . . . . . . .  Side-by-side,  tilt  nacelle 
Number  of  rotors . . . . . . . . . . . . . . . . . . . . . . . . .  2 
Wing span . . . . . . . . . . . . . . . . . . . . . . . . . .  9.80  m 
Design gross  weight . . . . . . . . . . . . . . . . . . . .  5900 kg 
Engines. . . . . . . . .  Two  modified  Lycoming T53-Ll3B 
Normal  rated  power . . . . . . . . . . . . . . . .  930 W each 
Rotor  type . . . . . . . . . . . . . .  Gimballed,  stiff  inplane 
Number  of  blades . . . . . . . . . . . . . . . . . . . . . . . . .  3 
Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.81  m 
Solidity . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.089 
Lock  number . . . . . . . . . . . . . . . . . . . . . . . . . .  3.67 
Pitch/flap  coupling . . . . . . . . . . . . . . . . . . . . . .  -15' 
Precone . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5' 
Tip  airfoil . . . . . . . . . . . . . . .  NACA 64-208 (a = 0.3) 
Root  airfoil . . . . . . . . . . . . . .  NACA 64-935 (a = 0.3) 

elastic  torsion  modes  were  used.  Hence  the  minimum  model 
consisted  of two  bending  modes plus the rigid pitch  motion. 
The  rigid-pitch  degree  of  freedom  had  a  considerable  influ- 
ence,  especially  on the calculated  oscillatory  pitch-link  loads. 

A  detailed  discussion  of the analytical  model  required  for 
stability  calculations is  given in  reference 4. The  conclusion 
of that  work was that  the minimum  model  for the  rotor  con- 
sists of  two  bending  modes  and  the  rigid-pitch  motion per 
blade, as well as the gimbal  and  rotor-speed  degrees  of 
freedom. 

When two  to six  bending  modes were  used,  little  effect 
was shown in the  calculations  of  the  rotor  performance. 
Blade bending is not expected to  be  a factor  in  the  considera- 
tion  of  the  key  performance  conditions  for  the  tilt-rotor  con- 
figuration,  namely  hover  and high-speed  cruise,  which  are 
both  axisymmetric  operating  conditions  for  the  rotor.  A 
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Figure 3.- XV-15  rotor  on  powered  test  stand in the Ames 40- by  80-Foot Wind Tunnel  (overhead  doors were open  for  hover 
tests). 

significant steady  rigid-pitch  deflection  of the blade  was cal- 
culated  (typically  1-2",  caused  by  control  system  flexibil- 
ity),  but  such  motion  only  produces  a change in  the  collec- 
tive control  for  a given thrust.  Little  effect was  seen in the 
calculated  performance  in  hover  when  using  zero to  two 
elastic  torsion  modes. In airplane  mode flight however, the 
calculation  showed  about 1.5% better  performance  when 
the  first  elastic  torsion  mode was  used. Little  effect was 
seen  when using higher  elastic  torsion  modes,  and no COU- 
pling of this  phenomenon  with  any  bending  modes was 
evident.  A  typical  result  was  an  elastic  torsion  deflection  of 
-1.2O at  the blade tip,  for V / m  = 0.7, and  for CT/O = 0.025. 
This  twist  change  produces  a  favorable  redistribution  of  the 

blade  loading.  Hence, the influence  of  the  steady-blade 
torsion  deflection  on  the  calculated  performance is not 
negligible.  However, it will be  seen that  the effect  for  the 
XV-15 does not significantly  improve the  correlation 
between  the  calculations  and  the  experimental  data. By using 
a  reduced  blade-torsion  stiffness  and  an  aft  placement  of the 
chordwise  location of the  aerodynamic  center,  these  analyti- 
cal results  imply that it is possible to design  a rotor  for  a 
significant  performance  improvement  because  of  the  static 
torsion  deflection.  At  least 5% better propulsive  efficiency in 
airplane  configuration  can  be  achieved,  with no penalty  on 
hover  figure of  merit. However, such  a change in the  rotor 
design  would  reduce the  flutter  speed. 
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Figure 4.- XV-15 rotor on dynamics  test  stand in the Ames 40- by  80-Foot Wind Tunnel. 

Aerodynamics 

Static,  two-diinensional  airfoil  characteristics were  used in 
the analysis, with  corrections  for  yawed  flow  effects  and  a 
tip loss factor (ref, 2).  The  airfoil  data is given in  reference 7. 
The  airfoil  lift-curve  slope is a  key  parameter  for  the  stability 
calculations.  The  maximum  lift  coefficient  and the minimum 
drag  coefficient  are  particularly  important  for  the  loads  and 
performance.  The  variations of  these  parameters  with Mach 
number  are  shown  in figure 5. 

For  the  stability  calculations,  a  quasistatic  perturbation of 
the  uniform  rotor  inflow was  used as a  model of the  rotor 
wake  influence on the  unsteady  aerodynamics (refs. 1 and 2). 
However,  such  inflow  perturbations  have  little  influence on 
the  stability  for  a gimballed rotor. 

The  rotor  wake-induced  velocity  used  in  the  calculations 
was constant over the  rotor disk  for  hover  and  cruise (axial 
flow  conditions),  and  vaned  linearly over the  rotor disk for 
helicopter  forward flight. The  mean  induced velocity  was 
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TABLE 2.- DEGREES OF FREEDOM  USED  IN  CALCULATIONS 

Rotor 
Gimbal  pitch  and  roll 
Rotational  speed 

Each  blade 
Coupled  flap/lag  bending 
Rigid pitch  motion 
Elastic  torsion 

Airframe 
Rigid body 

Elastic 

Total  number 

Periodic motion 

Performance  Loads 

Yes  Yes 
None  None 

2 modes 3 modes 
None Yes 
None 1  mode 

None  None 

None  None 

3 6 

obtained  from  momentum  theory,  with  the  ideal value multi- 
plied by  the  factor ~h = 1.17  in  hover,  and ~ f =  2.0 in  heli- 
copter  forward  flight. These  empirical  factors  account for 
nonideal  induced-power  losses  (see ref. 2), which  may  be 
expected  to be larger for this rotor  than  for  conventional 
helicopter  rotors,  particularly because of  its  high  twist. 

No significant  improvement in the general correlation  of 
the  performance  and  loads  calculations was obtained using 
the  nonuniform  inflow or dynamic  stall  models  described in 
references 1 and  2.  Nonuniform  inflow  and  dynamic  stall  do 
influence  the  details of the  calculated  behavior,  and  good 
models for these phenomena would be expected to improve 
the  prediction  accuracy.  The  currently available  analytical 
models  offer  little  improvement  for  tilt  rotor  calculations 
relative to  using  uniform  inflow  and  static  stall.  For  example, 
calculations  of  hover  performance  produced  inconsistent 
results  when  an  existing  prescribed  wake  geometry  model 
was used.  The  power  calculations  at  low  and  high  thrust  were 
good,  but  at  moderate  thrusts  the  calculated  induced  power 
was actually less than  the  ideal loss. Such behavior is not  sur- 
prising  since the wake  geometry  model  was  developed for 
helicopter  rotors,  not  for  the highly  twisted  blades of a  tilt 
rotor.  Other  state-of-the-art analyses produce similar results. 
One  prescribed  wake  geometry  analysis  currently  in use by 
industry provides  calculated  performance that shows  correct 
trends  but is too  optimistic.  The analysis  was  developed for 
helicopters,  and it shows induced  power levels typical of  heli- 
copters  rather  than  tilt  rotors.  Another analysis  which is 
being  used by  industry gives good  performance  predictions 

Cantilever 
stability 

Yes 
Yes 

2 modes 
Yes 
None 

None 

3 modes 

15 

Perturbation  motion 

Airplane 
stability 

Yes 
Yes 

2 modes 
Yes 
None 

3 symmetric or 
3 antisymmetric  motions 
4 symmetric or 
4 antisymmetric  modes 

19 

up to  moderate  thrusts,  but  predicts stall of  the  rotor  too 
soon, so the  predicted  maximum  lift  of  the  rotor is far less 
than observed in  tests.  Hence,  a  uniform  inflow  model  repre- 
sents  the  current  state of the  art for tilting  prop-rotor 
aircraft. 

Airframe Model 

The  XV-15  airframe  aerodynamics  are  described in the 
analysis  by a  drag  of D/q = 0.84 + 0.0040(L/q)z In2, and  a 
hover download  of  11%. These values are  based on correla- 
tion  with  the  flight-test  data, as  discussed  below. While direct 
measurements  of  the  drag  and  download  are not available, 
there  are  independent  estimates  from  model  tests  that  sup- 
port  these  values to  at least 220%. The  mode  shapes  and 
generalized  mass of  the  airframe  and cantilever  wing  used in 
the  stability analysis  were obtained  from NASTRAN (finite 
element)  calculations  provided  by Bell Helicopter.  The  fre- 
quency  and  structural  damping of the  modes were matched 
to the measured  values,  although  results will also  be  shown 
using the NASTRAN  frequencies.  The  calculations  using  the 
NASTRAN  frequencies  and  a  nominal  structural  damping 
level will be  called pretest results. The  calculations  using  mea- 
sured  frequencies  and  structural  damping levels will be  called 
post-test  results, A blade  rigid-pitch  natural  frequency  of 
36 Hz  was used, based on reference 7. Higher  values  of the 
control  system  stiffness  would decrease the calculated  con- 
trol  loads  and raise the  stability  boundary. 
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Trim Analysis 

THICKNESS RADIAL 
RATIO STATION 

0.18 0.4  TO 0.7 
0.12 8.7 TO 0.9 ----- 0.08 0.9 TO  1.0 

" 

r 

u - 1  .5 

.016 - 

.012 - 

C .- 
E .008 - 
TI 
0 

""""" "-@ 

.0°4 t 
0 .5 1 .o 

M 

Figure 5.- Variation  with Mach number  of  lift curve  slope, 
maximum  lift  coefficient,  and  minimum drag  coefficient 
from  XV-15  rotor  airfoil tables. 

The  aircraft  was  trimmed  in the analysis to  symmetric, 
level flight at a given speed,  by  adjusting  the pilot's controls 
and  aircraft  attitude.  For  the  performance  and  loads  calcula- 
tions  in  the wind tunnel,  the  rotor was trimmed to  a  speci- 
fied  thrust  and to zero  longitudinal  flapping  angle  by  adjust- 
ing  the collective pitch  and  longitudinal  cyclic-pitch  controls. 
At pylon angles of 0" and So, the cyclic  control was  zero  and 
only  the  rotor  thrust was trimmed.  For  the  calculations  of 
stability  in  the wind tunnel  (for  which  the  rotor was  wind- 
milling) the  torque was trimmed to zero by adjusting the 
collective  pitch. 

PERFORMANCE RESULTS 

The  performance  of  the XV-15  Tilt Rotor Research  Air- 
craft in cruise flight is shown  in figures  6 to  9.  The  rotor is 
operating  in axial  flow, functioning as a  propeller.  Figure 6 
shows  the  rotor propulsive  efficiency  as  a function  of  thrust, 
with  good  correlation  between  the  calculations  and  the  full 
scale  wind-tunnel  test results. The  measured  data  show no 
systematic  influence of either speed or  tip Mach number 
(although the  maximum  resultant  tip Mach number achieved 
was only  0.69).  The  theory  confirms  the small  influence of 
V/nR. Figure 7 shows the influence  of the static-elastic  tor- 
sion  deflection  of  the  rotor blade. The  effect is small, but  not 
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Figure 6.- Rotor propulsive  efficiency  as  a function  of 
thrust; comparison of  wind-tunnel  test  and  calculated 
results. 
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Figure 7.- Influence  of  static  torsion  deflection  on  calcu- Figure 8.- Rotor  power as a  function  of  speed,  for 
lated  rotor propulsive  efficiency (V/CLR = 0.70 and Mtip = 0.60; comparison  of  flight-test  and  calculated 
Mtip = 0.54). results. 

negligible.  The  influence of  the  torsion  deflection is  in the 
direction to slightly improve the  correlation  shown in fig- 
ure 6 (which  does not include the  torsion  effect). 

Figure 8 presents  the  rotor  power as a  function of speed, 
and figure 9 shows the same data  in  terms  of propulsive 
efficiency.  Good  correlation  between  flight-test results and 
calculations is shown, as  well as between flight and  wind- 
tunnel  tests results. This correlation was  achieved  by  using 
an  equivalent  drag  area o f f =  0.84  m2  for  the  airframe. While 
further analysis  of the  flight-test  data  may  make  it possible 
to improve  the  correlation,  little  more  can  be  concluded 
about  the  capability  to  predict  tilt  rotor  characteristics 
without  direct  wind-tunnel  measurements  of  the  airframe 
drag. 

The  performance of the  XV-15  in hover is shown in fig- 
ures 10 and  11.  Figure 10 gives the hover  figure  of  merit as a 
function of thrust, whereas  figure 11 gives the same  results 
in  terms of power  coefficient. By using  an  empirical factor  of 
~h = 1.15  to  1.17  in  the  induced  velocity  calculation, good 
correlation is achieved  between the  wind-tunnel  test  results 
and  the  theory. However, the  data  show  considerable  scatter, 
particularly  in  terms  of  the  figure  of  merit.  Hover  data  from 
out-of-ground-effect flight tests  are also shown  in figures 10 
and  11.  Good  correlation  with  the  wind-tunnel  and  calcu- 
lated  results is shown, based on  a  download of 11%. Good 
agreement  between  the  flight-test  data  and  theory is obtained 
if  a value for  the  hover-induced  velocity  factor  of ~h = 1.15, 
1.17, or 1.19 is used,  together  with  a  download  of 12%,  11%, 
or lo%, respectively.  Comparison of  the calculations  with  the 
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Figure 9.- Comparison  of  rotor propulsive  efficiency from 
flight test (solid  symbols),  wind-tunnel  test  (open  sym- 
bols),  and  theory  (lines; see fig. 6 for  key). 
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Figure 10.- Rotor hover  figure of  merit as  a function  of 
thrust; comparison  of flight test,  wind-tunnel  test,  and 
theory. 
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Figure 12.- Rotor  power as a  function  of  thrust,  for 
V/LB = 0.32 and  Mtip = 0.65;  comparison  of  wind-tunnel 
test  and  calculated results. 
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Figure 11.- Rotor  hover  power as  a function  of  thrust; 
comparison  of  flight  test,  wind-tunnel  test,  and  theory. 

wind-tunnel  data  indicates  that  the  appropriate value of ~h 
is at  the  low  end  of  this  range,  and  hence  it is concluded that 
the  download is 11% to 12%.  It  should be noted  that wing 
configurations to  reduce the download  are  currently  being 
investigated. 

The  appropriate value for ~h is deduced  by  comparing the 
theoretical  calculations  and  the  wind-tunnel  test  data.  The 
result  depends on the airfoil  data  being  used,  however,  since 
the  sum of the profile  power  (depending  on  the  airfoil  drag) 
and  the  induced  power  (depending on ~ h )  must  match  the 
total measured  power.  Hence, if the drag level in  the  airfoil 
table  were  higher,  a  smaller  value  of ~h would  be  required to  
achieve the same correlation shown  in  figures 10  and 11. The 
appropriate value for  the wing  download is deduced  by  com- 
paring the flight- and  wind-tunnel  test  data,  and  hence, is 
independent  of  the  split  between profile  and induced  power 
in  the  predicted  hover  performance. 

Wind-tunnel  results  for  the  rotor  power  at  pylon  tilt 
angles from 15" t o  75"  are  presented in figures 12 and 13. 
The  power is well predicted  for ap= 0" to 60" (airplane and 
tilt  rotor  configurations),  but is overpredicted  at olp = 75" 
(helicopter  forward  flight). An induced  power  loss less than 
that  predicted is not probable (as is confirmed  by  nonuni- 
form  inflow  calculations), so the profile  power is being  over- 
predicted.  This  can be attributed  to deficiencies in  the  stall 
mode! since the  inboard  portion  of  this highly twisted  blade 
is stalled at olp = 75"  even for  moderate  thrust. 
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Figure 13.-  Rotor  power as a  function of thrust,  for 
ap = 75"  and  Mtip = 0.65;  comparison of  wind-tunnel 
test  and  calculated  results. 

ROTOR LOADS RESULTS 

The  critical  rotor  loads  for  the  XV-15 are  identified 
(ref. 7) as follows:  the  oscillatory beamwise bending  moment 
at 0.35R radial station (Cm,/u); the  oscillatory  spindle  chord 
bending  moment,  at  approximately 0.05R (Cm,/u); and  the 
oscillatory  pitch-link  force (Cfc/u). The  oscillatory  load is 
defined as one-half the difference  between  the  maximum  and 
minimum  load  values  occurring  in  a  rotor  revolution.  The 
beamwise  bending moment is measured relative to  the blade 
principal  axes  (rotated  by  the  local  pitch angle relative to 
shaft axes).  The  spindle chord  moment is measured  just 
inboard of the  blade  pitch  bearing  and  outboard of the 
spindle/yoke  junction, relative to  the  rotor shaft  axes. 

The  calculated  XV-15  rotor  loads  are  compared  with full 
scale  wind-tunnel  measurements  in  figures  14 to  23. The 
oscillatory  bending  moments as a  function  of  blade radial 
station are  shown  in  figures 14 and  15.  The  moments  inboard 
of r/R = 0.1  are relative to  the  shaft  axes, while the  moments 
outboard of r/R = 0.1  are  relative to  the local  blade  principal 
axes. The  correlation is generally  good,  although the pre- 
dicted beamwise bending  moment is somewhat  iow  at 
r/R = 0.16. 

The  measured  and  calculated  oscillatory  loads as a  func- 
tion of thrust are compared  in figures 16  to 18 for  the  beam- 
wise bending  moment  at 0.35R; in figures 19  and  20  for  the 
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Figure 14.- Oscillatory  beamwise  bending  moment as a 
function of radial station  for ap = 75",  Mtip = 0.65, 
V/i2R = 0.27,  and CT/U = 0.102 (flagged  symbols  are 
measurements  on  spindle);  comparison  of  wind-tunnel 
test  and  calculated results. 

spindle chord  bending moment; and in figures  21 to 23  for 
the  pitch-link  load.  The  loads are  presented  for  three  speeds 
at  a  nacelle  angle  of 75";  for  four nacelle  angles at 
VI- = 0.32;  and  for  two nacelle  angles at V / W  = 0.51. 
(Spindle chord  load  data are not available for  the  last case.) 
The  tip Mach number was 0.65  for nacelle  angles  from 15" 
to  75", and 0.53 for nacelles  angles of 0" and 5". 

The  oscillatory  beamwise  bending  moments  are  predicted 
well in figure 16,  although  the  loads increase  somewhat  faster 
than  predicted  at  the highest thrust.  The  predicted  loads  at 
V / W  = 0.32 (fig. 17) are  high  for ap = 60" and  are  low for 
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Figure 15.- Oscillatory  chordwise  bending  moment as a 
function  of radial station  for ap = 75", Mtip = 0.65, 
V/i2R = 0.27,  and CT/u = 0.102 (flagged  symbols  are 
measurements  on  spindle);  comparison  of  wind-tunnel 
test  and  calculated results. 
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Figure  16.-  Oscillatory  beamwise  bending moment  at 0.35R 
as  a function  of  thrust  for ap = 75" and  Mtip = 0.65; 
comparison  of  wind-tunnel  test  and  calculated results. 

ap = 15";  the  slope  with  thrust is predicted  well  for all four 
nacelle  angles.  The  predicted loads are  low for ap = 0" and 5" 
(fig. 18) but  the magnitude  of  the  loads is small  in the air- 
plane  configuration. 
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Figure 18.- Oscillatory  beamwise  bending  moment  at 0.35R 
as  a function  of  thrust  for  Mtip = 0.53 and V/QR = 0.5 1 ; 
comparison  of  wind-tunnel  test  and  calculated results. 
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Figure 17.- Oscillatory  beamwise  bending  moment  at 0.35R 
as  a function  of  thrust  for  Mtip = 0.65 and V/QR = 0.32; 
comparison  of  wind-tunnel  test  and  calculated results. 

The  oscillatory  spindle  chord  bending  moments  are  pre- 
dicted well  in  figure 19,  except  for  the  results  at 
Y/W? = 0.32 and high thrust.  That  the  measured  loads  at 
V/W? = 0.32 are  as low as the loads  at V/W? = 0.27 is unex- 
pected,  however.  The  predicted  loads are low  for ap = 15" 
(fig. 20). 
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Figure 19.- Oscillatory  spindle  chord  bending  moment  as  a 
function  of  thrust  for cxp= 75" and  Mtip = 0.65; compari- 
son of  wind-tunnel  test  and  calculated  results. 
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Figure 20.- Oscillatory  spindle  chord  bending  moment  as  a 
function  of  thrust  for  Mti = 0.65  and V / n R  = 0.32; 
comparison  of  wind-tunnef  test  and  calculated results. 

The  oscillatory  pitch-link  loads  are  underpredicted  by 
about  250  to  300 N for all cases (figs. 21  to  23),  including 
the  nominally axial  flow condition  to ap = 0 (fig. 23).  The 
source  of  the  oscillatory  pitch-link  loads  at  zero nacelle  inci- 
dence is not  known,  but  it  appears  to be extant  for all oper- 
ating  conditions.  It is also noted  that  for V/S2R = 0.18 
(fig. 21),  the increase  in  pitch-link  load at high thrust  (pre- 
sumably  because of  stall) is not  predicted. 

The  calculated  XV-15  rotor  loads are compared  with 
flight-test  results  in  figures 24  to  26.  The  oscillatory  bending 
loads  are  shown as a  function of  speed  for five pylon  angles, 
and the oscillatory  pitch-link  loads  are  shown  for  three  pylon 
angles. The  aircraft was operating  at  a gross  weight of 
5900 kg;  a  center-of-gravity  fuselage  station  of  7.623 m; 
altitudes  from  750  to 1,500 m;  and  with  a  rotor  tip Mach 
number of  0.65. 

The  oscillatory beamwise bending  moment is predicted 
well (fig. 24).  Both the  trends  and  magnitude  of  the  calcula- 
tions  are  correct,  although  the  predictions are somewhat high 
for ap = 75" and 60".  The  oscillatory  chordwise  bending 
moment in flight is generally not predicted  well (fig. 25). 
While the results of  the  theory are good  for ap = 75",  they 
are  somewhat  high  for ap = 60°,  and  for ap = 30" they are 
low  and  the  slope is too small. The  predictions  for up= 90" 
are low,  and  in  particular  do  not  exhibit  the  growth  at  speeds 
above V/!2R = 0.2 that is evident  in  the  data.  The  predictions 
for ap = 0 are  very low; the  data  for  zero nacelle  incidence is 
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Figure 21.- Oxcillatory  pitch-link  load  as  a  function  of 
thrust  for ap = 75' and  Mtip = 0.65; comparison  of  wind- 
tunnel  test  and  calculated  results. 
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Figure 22.- Oscillatory  pitch-link  load as a  function  of 
thrust  for  Mtip = 0.65  and V///s2R = 0.32;  comparison  of 
wind-tunnel  test  and  calculated results. 
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Figure 23.- Oscillatory  Pitch-link  load as a  function of 
thrust  for  Mtip = 0.53  and V/SU = 0.5 1 ; comparison  of 
wind-tunnel  test  and  calculated  results. 
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Figure 25.- Oscillatory  spindle chord  bending  moment as a 
function of speed for  Mtip = 0.65; comparison  of flight 
test  and  calculated results. 

Figure 24.- Oscillatory  beamwise  bending  moment  at 0.35R 
as  a function  of speed for  Mtip = 0.65; comparison  of 
flight  test  and  calculated results. 
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Figure 26.- Oscillatory  pitch-link  load  as  a  function  of  speed 
for Mtip = 0.65; comparison  of  flight  test  and  calculated 
results. 
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about  the same  as for crp = 30°.  The discrepancies  in  helicop- 
ter  forward flight (crp = 90") are probably caused by  the 
rotor  model,  presumably  associated  with  the  stall  character- 
istics  of  the  rotor.  That  the  measured  loads  in  airplane  mode 
(crp = 0) are  higher than  predicted,  might be  because of  inter- 
ference  with  the  flow field produced  by  the wing, an  effect 
that is not included in the analysis and is not present in the 
wind-tunnel  configuration  either (fig. 3). 

The  oscillatory  pitch-link  loads  in flight are  always  under- 
predicted (fig. 26),  although  the  trends are  predicted well 
except  at  the highest  speeds for  each nacelle  angle.  Generally 
this  correlation  between  analysis  and  measurement is similar 
to  the wind-tunnel results. 

AEROELASTIC  STABILITY RESULTS 

Aeroelastic  stability  results for  the  XV-15  rotor  on  a 
cantilever wing in the wind tunnel are  presented in fig- 
ures 27 and 28. The  modal  frequency  and  damping  are 
shown  as  a  function  of  speed  for the  three  fundamental wing 
modes  (beam  bending,  chord bending,  and  torsion).  Good 
correlation  between  the  theory  and  measurements is shown, 
based on  the  post-test values of  the wing frequencies  and 
structural  damping. However, there is significant scatter  in 
the wing torsion  data;  there are little  damping  data  for  the 
wing chord  mode;  and  no  data are  available  in the vicinity of 
a  stability  boundary, where  larger  variations  of the  damping 
with speed  would  allow a  more  critical  test  of  the  theory. 

Aeroelastic  stability data  measured  on  the  XV-15  Tilt 
Rotor Research  Aircraft  in flight are  presented  in  figures  29 
to 35. Frequency  and  damping  of  the  three  fundamental 
symmetric wing modes  and  three  fundamental  antisymmetric 
wing  modes  are  shown as a  function  of  speed.  Reasonable 

12 r 

10 A -  TORSION 

*- 
8 -  

0 

Hz - 6 -  0 !7 n o n  CHORD 
4 -  

2 -  

BEAM 
n n  u u 0 

O -  .1 1 I I I 

.3 .4 .5 .6 
VIS2 R 

Figure 27.- Cantilever  wing mode  frequency as a  function  of 
speed  for  Mtip = 0.53;  comparison  of  wind-tunnel  test  and 
calculated results. 

correlation is obtained using the  post-test values  of the  modal 
frequencies  and  structural  damping in the analysis.  Results 
are  also  shown  using the  pretest values for  the  frequencies 
(obtained  from  the NASTRAN  analysis)  and structural 
damping (a uniform level of  1%  critical).  In  the flight test 
data (fig. 29), even the mean  values of  the  frequencies  do  not 
show  a  smooth variation with  speed.  There is a  trend  to 
lower  frequency  as  speed  increases,  with  which  the  theory 
agrees. The  flight-test  data show a  trend  of increased damp- 
ing  as  speed  increases, for all modes (figs. 30  to  35); again, 
the  theory  predicts  this  trend.  The  measured  damping  data 
show  a very  high level of  scatter  however,  and  the  operating 
conditions are far enough  from  any  stability  boundary that 
the damping  should not vary  greatly  with  speed, 

The  flight-test  data on aeroelastic  stability  were  obtained 
from  two  aircraft;  for  tip Mach numbers of 0.61  and  0.69; 
for  a  standard  and  a  soft  pylon  downstop;  for level flight and 
descents;  and for altitudes .of 1,500,3,000,  and 4,500 m. The 
gross  weight  was 5,900 kg for all cases. The  only observable 
trends  in  the  data were a  lower  damping  of  the  symmetric 
wing-beam  bending  mode  in descent,  and  a  lower  damping  of 
the  symmetric wing torsion  mode  at  a tip Mach number  of 
0.69.  The  data  scatter was too high to allow other  effects  to 
be seen;  moreover, in most  cases the  data  do  not allow  an 
extensive  examination  of  the  influence of one  parameter  at  a 
time  (for  example,  the  aircraft  speed  tends to increase as the 
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Figure 28.- Cantilever  wing mode  damping as a function  of 
speed  for  Mtip = 0.53;  comparison  of  wind-tunnel  test  and 
calculated results. 
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altitude increases). The  mean  data  shown  in figures 29  to 35 standard  deviation  of the sample  mean is even less meaning- 
are obtained  by averaging  1 to 12 points  at  each speed ful  in  this  case, but it does  serve to  characterize  the  scatter of 
(excluding  only  the  data  for  the  symmetric  beam  mode  in the  data.  The  standard  deviation  of  the mean  value is 0.07 to 
descent  and  the  symmetric  torsion  mode  at  0.69  tip Mach 0.20 Hz for  the  frequency,  and 0.004 to 0.005 for  the  damp- 
number). However,  averaging frequency  and  damping  mea- ing. As for  the  wind-tunnel  measurements,  the  symmetric 
surements  cannot  be  expected to eliminate all errors.  The wing-bending mode  data are of higher quality,  with  standard 
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Figure 29.- Airframe  mode  frequency as  a function  of  speed;  comparison  of flight test  and  calculated results. 
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Figure 30.- Airframe  symmetric  beam  mode  damping as a 
function  of  speed;  comparison  of flight test  and  calculated 
results. 
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Figure 32.- Airframe symmetric  torsion  mode  damping as a 
function  of  speed;  comparison  of flight test  and  calculated 
results  (see fig. 30 for  key). 
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Figure 34.- Airframe antisymmetric  chord  mode  damping  as 
a  function  of  speed;  comparison  of flight test  and  calcu- 
lated  results (see fig. 30 for  key). 
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Figure 3 1 .- Airframe  symmetric  chord  mode  damping as a 
function  of  speed;  comparison  of flight test  and  calculated 
results (see  fig. 30 for  key). 
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Figure 33.- Airframe antisymmetric beam  mode  damping as 
a function  of  speed;  comparison of flight test  and  calcu- 
lated  results (see  fig. 30 for  key). 
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Figure 35.- Airframe  antisymmetric  torsion  mode  damping 
as a  function  of  speed;  comparison  of flight test  and  calcu- 
lated  results (see  fig. 30 for key). 

15 



deviations  in  frequency  and  damping  approximately  one-half 
the lower  values given above. 

The  calculations  presented  in figures 29  to  35 were  per- 
formed  for  a gross  weight of  5,900 kg,  a tip Mach number  of 
0.61,  and  an  altitude  of 3,000 m. The  theory  confirms  the 
small  influence  of  altitude on the damping level for  the 
speeds  shown.  The  damping  ratio  would  be  at  most  0.002 
lower  at 4,500 m  altitude,  and  higher  by  about  the same 
amount  at  1,500 m.  Such  a  small  effect  would  be  masked  by 
the  scatter  in  the  data. 

The  calculated  stability  boundaries  for  the XV-15 in flight 
are  shown  as  a  function of speed  and  altitude  in figure 36. At 
high  altitudes,  the  stability  boundary is at a  speed  beyond 
where the analysis  predicts the aircraft  can  achieve  a 
trimmed,  equilibrium flight condition.  The  flight-test  data 
points (all stable)  are also plotted.  The  calculated  boundaries 
are  shown  for level flight;  for  a dive at  zero  power (windmill- 
ing rotors);  and  for  a dive at  the  maximum allowable rotor 
mast  torque  of  14,700 N-m (the  XV-15 is power-limited  only 
above about 4,750 m  altitude).  For  clarity,  only  the  post-test 
calculations  are  shown  for  the  windmilling  dive  case.  In  par- 
ticular,  the small  differences  between  the  pretest  and  post- 
test  predictions  of the stability  boundaries  should be noted. 
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Figure  36.-  Aircraft  stability boundary as  a function of 
speed  and  altitude;  comparison  of  flight-test  conditions 
and  calculated  stability  boundaries. 

GENERAL ASSESSMENT OF TECHNOLOGY STATUS 

The  technical  problems facing the development  of  a  tilting 
prop-rotor  aircraft  are similar to those involved in  the devel- 
opment  of  conventional  helicopters.  The special  characteris- 
tics  of  the tilt rotor configuration do  not  introduce  new 
subjects,  but  they  can change the emphasis  when  they are 
compared to  helicopter  technology. Moreover, the design 
parameters  of tilt rotors  are  sufficiently  different  from  con- 
ventional  helicopter  rotors to  require  test  data  and analysis 
development specifically for  this  concept. 

Rotor  Performance 

The  inherent  compromise  between  hover  and cruise aero- 
dynamics of  the  prop-rotor  means  that  the blade  loading will 
not be  close to ideal  for  either.  More  importantly, it will not 
be  close to  the loading  typical  of  either  helicopter  rotors or 
airplane  propellers.  Thus the significant  advances  in  predic- 
tion  capability for  the  performance  of  hovering  rotors  or  pro- 
pellers that have  been made  in  the  last  decade are not 
entirely  transferable to  tilt  rotors.  Generally,  the level of  pre- 
diction  capability  for  tilt  rotors is somewhat less than it is for 
helicopter  rotors. 

Aircraft  Performance 

The  tilt  rotor  configuration  does  present  some  unique  air- 
frame  aerodynamic  problems,  such as the design of  the 
nacelles,  tail,  and  wing/fuselage  junction.  In  addition,  there is 
not a  long  history of successful aerodynamic design solutions 
for  tilt  rotors, as there is for  airplanes  and  helicopters. 

Vibration 

Basically the  tilt  rotor  configuration  eliminates  most  con- 
cerns  with  fuselage  vibration.  Even  in  helicopter  mode, the 
wing  dynamics  provide  some  vibration  absorption. By tilting 
the  rotors,  the  wake-induced  vibration  at  low  speed can  be 
minimized,  and  the  rotor is not  intended  to  fly edgewise at 
high  speeds  where the vibration  could  be high. So while  pre- 
diction  of  tilt  rotor  vibration  would  be  no  better  than  for 
helicopters,  this  deficiency is of  much less concern. 

Rotor  Loads 

Generally, the  prediction  capability is at  about  the same 
level as for  helicopters:  a  fairly  accurate  prediction  of  mean 
and  oscillatory  loads is possible. The  configuration  makes 
high  speed  loads  of less concern,  but  rotor  loads  can  define 
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the  upper  limit  of  the  conversion  corridor.  This level of  capa- 
bility is adequate to  design a rotorcraft,  but  still  requires 
considerable  wind-tunnel  testing to confirm or revise the 
design loads. 

Airframe  Loads 

Oscillatory  loads  and  vibration  in the  airframe,  particu- 
larly the nacelle and  wing,  can  be a problem  and  are  difficult 
to predict. A structural design that alleviates both  the  prob- 
lem  and  the  need  for  extremely  accurate  predictions is 
desirable. 

Noise 

The high inflow  ratio  of the  tilt  rotor  eliminates  the wake 
interference  and  smooths  the  airload  distribution. Also, tilt 
rotor blades tend  to have small  cross-sectional  area at  the 
tips,  minimizing  the high-speed noise.  Hence, the  tilt  rotor is 
basically  a quiet  rotorcraft  configuration,  although  the high- 
disk  loading  tends to  increase the noise.  The  prediction  prob- 
lem is probably easier than  for  helicopters,  but  the  accuracy 
of a noise prediction  would  still not be good. 

Rotor Stability 

Prediction  of  the  aeroelastic  stability  of  the  tilt  rotor 
blades is perhaps  more  difficult  than  for  helicopter  blades, 
because  of  such  additional  considerations as the large collec- 
tive pitch  and  rotor speed ranges over  which  a tilt  rotor  must 
operate. Even a gimballed prop-rotor is more  accurately  com- 
pared to  a hingeless rotor  than  to a teetering  helicopter  rotor 
when assessing the  dynamic  characteristics.  Hence, as for 
helicopters,  the  status  of  the  prediction  methodology  may be 
characterized as a  lack  of  confidence  that  introduces  uncer- 
tainties  in  the  dynamic  behavior  of  any  new  rotor  configura- 
tion.  The  problems  with  blade  dynamics  predictions  are  more 
important  for  tilt  rotors since the  articulated  configuration is 
not as  practical as it is for  helicopter  rotbrs. 

Aerodynamic  Interference 

The  interactional  aerodynamics  problems  may  be  some- 
what  simpler  than  for  helicopters,  but  there  has also been less 
work  on  these  problems  for  tilt  rotors. In any case,  adequate 
analytical  techniques  for the  aerodynamic  interference 
between  the  rotor  and  airframe  have  not  yet  been  developed. 

Gust  Alleviation 

The  gust  response of the  tilt  rotor  configuration is differ- 
ent qualitatively, but  not  quantitatively,  from  helicopters. 
The  capability to predict  the gust  response is reasonably 
good,  because  of  the  simpler  aerodynamics  of  the  rotors  in 
cruise  flight. A number  of  gust alleviation controllers  have 
been designed and  tested,  some  successfully,  but  none  has 
been  tested  in flight. 

Flutter  Control 

Very little  work  on design or testing  of  automatic  control 
systems  for  flutter  control  of  tilt  rotor  aircraft  has  been 
done. A simple design has  been  tested  full scale in  the wind 
tunnel,  and  many  gust alleviation  systems  also  increase the 
whirl  flutter  stability  of  the  aircraft.  The  analytical design 
tools  are available for  this  problem,  but  application to  a tilt 
rotor is not a  trivial step,  when  the critical nature  of a flutter 
control  system is considered. 

Data Base 

Most of  the  testing  of tilt rotor models and  aircraft  over 
the last  fifteen  years  has  been  for the XV-15  aircraft  develop- 
ment  program.  Hence,  in  spite  of  the large number  of  tests 
there is not  that  much  data available that  has  the high quality 
and  detailed  documentation  required  for  development  of 
analyses,  verification  of  analyses, or examination  of  param- 
eter variations. 

Whirl Flutter 
CONCLUSIONS 

The  coupled  rotor/fuselage  aeroelastic  stability  has 
received a  great  deal  of  attention  over  the  last  decade. While 
i t  remains  a  critical  problem  for  tilt  rotor  designs,  consider- 
able confidence  in  the  prediction  capability  has  been  accu- 
mulated. New tilt  rotor designs that  expand  the  operational 
capability of  the  configuration will, however,  introduce  new 
factors  that will require  further  development of  the stability 
analyses. In  particular,  significantly  increasing the speed 
capability of  tilt  rotors will require  better  treatment  of high 
speed  aerodynamic  effects  on  the  rotors. 

Calculated  performance,  loads,  and  stability  of  the XV-15 
Tilt Rotor Research  Aircraft have been  compared  with  wind- 
tunnel  and flight measurements.  The  performance  data 
included  power  and  efficiency,  in  both  hover  and cruise. The 
rotor  loads  data  consisted  of  the  osciilatory  beam  and  chord 
bending  moments,  and  the  oscillatory  pitch  link  loads.  The 
aeroelastic  stability  data  included  the  frequency  and  damping 
of  the  fundamental wing modes. 
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The  correlation  between  the  measured  and  predicted 
results can be  summarized as  follows.  For  performance,  there 
was a  moderate level of  scatter  in  the  data,  which  consisted 
only  of  rotor  thrust  and  power  information.  Good  correla- 
tion was achieved,  based on proper  choice of  the empirical 
induced-velocity  factor  for the hovering  rotor,  the  airframe 
download in hover,  and the airframe  drag in cruise. For 
loads,  there was a  moderate level of  scatter  in  the  data,  which 
consisted  only  of  one-half  peak-to-peak  information.  Fair to  
good  correlation was obtained, using  an  empirical factor  for 
the  induced velocity  in helicopter  forward  flight,  and  static 
stall  for  the  blade  airfoil  characteristics.  The  oscillatory beam 
bending  moments  were  predicted  well; the oscillatory  chord 
bending  moments were  sometimes  predicted  well  and  some- 
times  underpredicted;  the  oscillatory  pitch-link  loads were 
always underpredicted.  Some  anomalous  results were  seen 
(such as the  not insignificant  oscillatory  loads  at  zero  nacelle 
angle),  and  there was a general tendency  for  the  predicted 
loads to  increase less than  the  measurements  at high speeds 
(presumably  because  of  the  stall  model).  For  stability,  there 
was a very high level of scatter  in  the  data, which  consisted 
of only  frequency  and  damping  information  at  speeds  well 
below  any  stability  boundary.  Good  correlation was 
achieved,  using  the  post-test values of  the  frequencies  and 
structural  damping.  The  pretest values produced  a reasonable 
prediction  of  the  stability  boundaries. Based on this  correla- 
tion,  the analysis  may  be  assessed  overall as adequate  for 
reliable use in  the  design,  evaluation,  and  testing  of  tilting 
prop-rotor  aircraft. 

Regarding future  methodology  development,  there are 
clear opportunities  for  improvements  in  certain  areas.  For 
performance,  a hover  analysis  using nonuniform  inflow is 

needed.  The  low  aspect  ratios  of  future  tilt  rotor designs may 
make  lifting  surface  techniques  desirable  as  well. A method 
for  calculation  of the airframe  download  in  hover is required, 
in  addition to current  efforts  to  develop wing configurations 
with  low  download.  For  loads,  it  may be expected  that  good 
nonuniform  inflow  and  dynamic  stall models  would  improve 
the  predictions.  The  current  inflow  and  stall  models are all 
empirical to  some extent;  thus,  these models  have not been 
developed  for  the  aerodynamic  environment  that  character- 
izes tilting  prop-rotors, so some  development  specifically  for 
tilt rotors is needed.  For  stability, reliable pretest  predictions 
of  the  structural  dynamics  of  the  airframe are needed,  par- 
ticularly  frequencies  and  mode  shapes. An improved  capabil- 
ity  to handle  new rotor configurations,  such as bearingless 
rotors, is desired as well. 

Better  experimental  data are  needed to  support  the devel- 
opment  and  verification of  tilting  prop-rotor  prediction  capa- 
bility. More accurate  and  detailed  data are  needed.  The  data 
currently available for  the XV-15  shows  significant scatter  in 
most cases, and  often were not acquired  at  consistent  operat- 
ing conditions.  For  performance,  direct  measurements  of  the 
airframe  hover  download  and  cruise  drag  are  required, as  well 
as rotor  blade  airload  measurements.  For  loads,  time-history 
data  and  rotor  blade  airload  measurements are needed.  For 
stability,  measurements of the  flutter  mode  shapes  and  mea- 
surements closer to  stability  boundaries  are  required. 

Ames  Research Center 
National  Aeronautics  and  Space  Administration 

Moffett  Field,  California,  94035,  June 15, 1983 
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